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Semiclassical Corrections for

Inelastic Atom-Surface Scattering

from Classical Trajectories

(Preliminary draft)

W. Kohn, J. H. Jensen, and P. Chang

Department of Physics

University of California

Santa Barbara CA 93106

ABSTRACT: We consider an atom scattered inelastically from a surface and

derive a formula for the exact semiclassical limit of the expectation value of an

arbitrary, smooth function of the scattered atom's final momentum. The formula

expresses this semiclassical limit in terms of equilibrium correlations for the atoms

which compose the surface and quantities which can be calculated from classical

scattering trajectories. We give numerical results for a simple one-dimensional ex-

ample and compare these results with those given by the trajectory approximation.
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I. Introduction

Atom-surface scattering can be used to obtain information about the structure and

dynamics of a surface and about the atom-surface interaction potential.1 When the initial

energy of an incident atom (hereafter called the "incidon") is large and its de Broglie

wavelength is small, the semiclassical limit provides an accurate approximation. In this

paper, we derive an expression for the exact semiclassical limit of expectation values of

functions of the incidon's final momentum in terms of classical trajectories and equilibrium

correlations for the atoms composing the surface. Since there are well-established methods

for calculating classical trajectories for realistic surfaces,2 the formula provides a practical

method to obtain the semiclassical approximation for quantities observed in scattering

experiments.

We illustrate the theory with a one-dimensional model consisting of an incidon scat-

tering off a harmonic oscillator, giving numerical results for the semiclassical momentum

shift and momentum uncertainty. We compare these results to those produced by the

trajectory approximation which is frequently used in the study of inelastic atom-surface

scattering.3- 9 We find that the trajectory approximation does not, in general, give either

the correct semiclassical shift or uncertainty. However, if the incidon-oscillator interaction

is adiabatic or if the maximum displacement of the harmonic oscillator from its equilibrium

position is much smaller than the range of the interaction potential, then the trajectory

approximation accurately predicts the momentum uncertainty.

II. Definition of Semiclassical Limit

Many approaches to surface scattering have gone under the name "semiclassical." Of-

ten the term means that the approach employs both classical and quantum mechanical

2
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methods. Alternatively, semiclassical can imply an expansion in powers of h. It is in this

latter, more precise sense that we use the word.

We consider a d-dimensional quantum system consisting of an incidon and a surface

substrate of harmonic oscillators. The Hamiltonian is
2 N

2m 2 a-;o2 22)
H=i=1

where p is the incidon's momentum, x is the incidon's position, m is the incidon's mass, and

V(x, i) is the atom-surface interaction potential which is taken to be a smooth function

of x and Ci. oi and Ci are coordinates for the normal modes of the surface atoms, obeying

the commutation relation [ i, crjJ = iij, and wi is a normal mode frequency. We assume

that V(x, i) - +o as x. fi --* -oo, and V(x, i) -- 0 as x. LA --" +0o, where fi is a unit

vector perpendicular to the surface.

At an initial time, to, the surface is in thermal equilibrium at a temperature, T = hr,

and the incidon is described by a wave-packet of the form

4 (x - x0)2  PO
i (x) = (27rh-)-I exp (2)

where xo is the incidon's initial mean position and P0 is its initial mean momentum,

satisfying Po • ft < 0.

At a later time, t, the expectation value of a smooth function, Q(p), is given by

< Q(p) > (t) = Q(t - to,xo,Po, y,T, h). (3)

Since the impact parameter for the collision is generally unknown, we average < Q(p) >

over the components of x 0 which lie parallel to the plane of the surface. Indicating this

average with a subscript a, we have

< Q(p) >a (t) = Qa(t - t0,x0 .flp O, ,T, h ). (4) '0 __
C.7
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The final classical value for Q is defined

Qf(po,T) =

lim ( nrn(i'im (im Q(t - t0 ,x0 fitPO~',7 2 )))), (5)'-* \x0"fi-*c \ -t)--.o h-0

while the semiclassical shift for Q is

AQ(po,,r,h) =

Ihim (lim ( nlir (lir Qa(t - (6)

-00 \Xo.n-o _(to). h*ooi.

Finally, we define the semiclassical limit or approximation for Q as Qsc = Qfc + AQ.

If the incidon's initial energy is large compared to the energy of a typical phonon and

the incidon's de Broglie wavelength is small compared to the distance scale over which the

interaction potential varies substantially, then we expect Qsc to be a good approximation

for the final expectation value of Q. Since we have taken the surface temperature to be of

order h, the initial energy must also be large compared to kBT with kB being Boltzman's

constant.

III. Derivation of Formula for Semiclassical Limit

To obtain an expression for the semiclassica! limit, we use the Wigner distribution

function10 defined by

(X, p, C, Co It) = da'a exp -Pa+F + ci
(2Irh)(d+N) I- p h =1 (7)

Xp x - a,x - a, i + ai, i - ai't),

where Dai = f-IN dai, and p(x,x', i, e,t) =< x, ilp(t)Ix',e > is the density matrix.

The expectation value of Q(p) can be written

< Q(p) > (t)= fddzddpDeiDaiQ(p)f(x,p, i,ai,t). (8)

4



The equation of motion for f is

(T Mc5x i + ai ai - i i a)f (x,P, CisCrist 0

aih Elxi]i[ ) ( '(j)i 0 a(k)

L .1Ik=

where the sum is over all positive, odd L, with L = 1 Ij + N1 Ak, where Ij and

Ak are nonnegative integers; repeated indices are summed unless they are contained in

parentheses, and the coefficients, J, are given by

d [ Na
J(x, i,li, Ai) [(9 )I)]aJJ 1 AM V X i). (10)

The initial condition is
f (x'P, i ICi, to)=

fsur(Ci' i) exp[ (x - xo) 2  2(p- P0) 2 ] (11)

(irh)d 2hy h '

where
N 1 exp[tn 2_B \ " ) + -(i) )]. (12

fsur(Ci,si) = 7 I tanh [ t () )((i)i) + 2)(12)
7rh 2k P W~I (~ih hw(i)i=1 B2B

The classical trajectory is defined by the equations

PCI(t) =m*Cl(t)

f cl(t) =  OV(x, i) I~I(& C(

trax(t) =(13) 
(13)t-

6ql (t) W,~i el W v X i)
I - (i)t WOa i Ix=x'(t); ,=C'(t),

and the initial conditions xcl(to) = x0 , pcl(to) = po, fl(to) = 0, and af 1 (to) 0. We

assume the incidon does not stick to the surface so that x cl (t) • fi - oo as t , oo.

Defining a distribution function, g, so that

g(r,s,6i,,i~t) = (h)d+Nf(x,p, i i t ) ,  (14)

5



where 1

r =--.[p - pt)1t)]

S [p - PC (15)

4i 1 [a - af(t)]

equation (9) may be rewritten

si 0 a 2 a 1V a 1 )V
Yr-i ~~~ ~ c , aoil; 7=az

2 Er(, A)[d (~- r,() N.iV4 a A(k) (6

iL j=(2J) k12 al(k)) I

where the symbol "Icl" indicates that a quantity is evaluated for the classical trajectory.

The initial condition for g is

g(rts,ei,,¢i,to)=

gsur(ei, i) exp [ 2  (17)
(7)d2-f

where

gsur (ei,,';J = an N WIi exp [-tanh (iA\J ahj~2kBT) ( 2's)] (18)
BT U)(i)

and the coefficients, J, can be written

d N 2

j[ iii a =- -(,)ir T k=1 ,,( ( )

X I a _ x,~h (m ) On) _ vh (n) ) J
A== (m)' (n1

- -S
whr A=- 1 "- _E

where A = blb + n=1 On, with bm and On being nonnegative integers.

From equations (16)-(19), one can show that g has an expansion

00

(r,= (4) gn(r,s, i,it), (20)

n=O
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where g, is independent of h and has the properties

f ddrddsDeiDcigo(r, s, ei,i,t) = 1

f ddrddsDiDign(r,s,iIi,t) = 0, n # 0 (21)

gn(-r,-s,-,i,-Iqi,t) = (-1)n gn(r, s,ei, ;i,t).

The equations of motion for the gn are found by substituting the expansion for g from

equation (20) into equation (16) and collecting terms of the same order in h. Using

equations (8), (14), (15), (20), and (21), the h-expansion for < Q(p) > can be shown to

be

< Q(p) > (t) = Q(p)ICI + [--(P) Ic f ddrdd.,DeDc;g(rS, ,,t' sj

+ !Qp) Io, f ddrddsDEiDc;igo(r,s,eiit)sjak] + 0(h 2 ).

Now consider a function, f, which satisfies

'a pi a aa
_at -+ .- -+ , - W? Ax,P, 6, oit0 =(23)
[av(x, ) a+ aV(x, i) aaI. ap ai aaiJ ?-, (x p , 'i' 0t)

with the initial condition (x, p, 6, Oi, to) = f(x, p, &, oi, to). Equation (23) is the clas-

sical transport equation for a phase space probaoility distribution corresponding to the

Hamiltonian H and is identical to equation (9) except that the terms with L # 1 do not

appear.

The function §, defined

(r, s,,i,,,iit) = (h)d+Ni(x,P, vii,,t), (24)

satisfies an equation identical to equation (16) but without the L : I terms and has an

h-expansion
00

=(r,s,,,;j,t) =E (h)rin(r,s,ei, ;i,t). (25)

n=O

7
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also has the properties given in equation (21).

The equations of motion for go and g0 are identical, and hence go - g0 for all times. 6

Although the equations for gI and j1 are different, it can be shown (see Appendix A) that

f ddrddsD~iD;i~l (r,s,i , ci,t)sj = f ddrddsDeiDigl(r,s, i, ;i,t)sj. (26)

From equation (22), we then have

Q(p) > (t) =Q(P) c + L--aQ(P) ddrddsDeiDig1 (r, s, , i, t)sj

1 a2Q(p)Ic f ddr,:dsDeiDcigo(r,s,(i, i,t)sjsk] + O(h 2 ) (27)

2 '9pjOPk

f ddxddpDiDoiQ(p)f(x,p, ei,ai,t) + O(h 2 ).

Therefore, the classical nhase space distribution, f, gives the correct quantum expectation

value for Q up to order h.

We define a set of classical trajectories by

pt (t, X, p, O, a ) =(M2 (t,, " )

PIr(t,x',p', a) = - aV(x'i)(tIx Ir(28)
tr ( t X t Pi p t, Xt$ i, a

(t I 1IPr, ' ) Itr,

where the derivatives of V (x, ei) are evaluated at

x =xtr(t,xp , , IP )
(29)ri = (t, x ', P ', , )

and with the initial conditions
xtr (to, x'  p', P , a ) =x/
ptr(to,x',p', ,a) =p'

(30)P r(to,x ', i,a'i) =P'i

tr , 4Icr (to , ,' , , P % = ,, . .,

8
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The solution to equation (23) can then be written

f(x, p, iai, t) d d, ,ddpID D a f(x p', or to)

x 6d- Xtr (t,X',p, l, o, )b)6d[P - pr (t, X' p, e, (](31)

i=31N
x r e, _t[ - .r(tX1, pf, , r 4(t, X1,, ,Orfl}

which implies

< Q(p) > (t) = J dpDiDaiQ[p tr(t,X",P, , io)If(xp', ',,to) + 0(h 2 ). (32)

Expanding about the initial values for the classical trajectory of equation (13) yields

I a2 Q ld2 1a2 Q, 2_,
< Q(p) > (t) Q[pc(t) + --- i + -3 -- 6 PT 6i

1 a,- 2  (33)

+ -- Icl62e +1a I.!62, + o(h 2 ),

2where I2 Q = a 2 Q[ptr(t, xtpo,,O)1x=x°
- ax 2

a2Q a2 QlpIr(t, xo, p', , o)]-_rP2 Ici= 1 P'=PO

a 2p Q (34)

82 Q, 02 Q(ptr(t, xoPo, CO)

a2Q a2Qlp t"(t,xo,Po''a)l

and

6"x i = ddx/d PDiDaif(x ,P, ',ai,to)[xi - (xo)i12 = hy

62pI =1 d - = 4-y (35)

I = 2w 2kBr
62a, = , d, , " ' '" 2  oh W-- -i

= f d 'd pD oDa~i(x ,P',iaito)ai = T - 2ot r

In order to obtain the semiclassical shift, AQ, we must average equation (33) over the

impact parameter, differentiate with respect to h, and take the limits indicated by equation

9
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(6). Doing this causes the first three terms on the right side of equation (33) to vanish, as

well as those of order h 2 or higher. The first term vanishes since it is independent of h, and

the third term vanishes since 62p goes to zero as -t tends to infinity. The components of the

second term perpendicular to A vanish upon averaging over the impact parameter, while

the component parallel to fi vanishes since the final momentum of the incidon becomes

independent of x 0  fi as (t - to) --* co and x 0 • fi -* oo. Thus, the semiclassical shift is

given by

-. a2Qa, 2i 1 a2 Q, IfcS 2 ,
= i 2 I C' + 2 a1 I (36)

where fcQ a
w h e r e a2  Q If c = lim 0,( t lim ( a 2 Q 1 ) )

a2i 1im (8 2 Q (37)

80Jo2fC 0 f-. i(-to)-.oo,(C1 c a)

with the subscript a indicating the average over the impact parameter and the subscript

fc indicating a quantity evaluated for the final, classical scattered state after the limits

x 0 • fi --+co and (t - to) - co have been taken.

Equation (36) may be rewritten in terms of coordinates., yi, which represent the dis-

placements of the surface atoms from their equilibrium positions, as

1 ___Q 1a 2 Qa
AQ = 1a Ifc < YiYj >0 + a2 "a ' fc < ij >0, (38)

where the correlations for the surface atom coordinates are evaluated in thermal equilib-

rium. Equation (38) has a simple physical interpretation. Consider the classical scattering

of an incidon off a surface where the surface atom coordinates initially obey a Gaussian

probability distribution with the property that it implies atom-atom correlations identical

to the equilibrium quantum mechanical atom-atom correlations. Then the average value

of Q(p) for the final scattered state will be equal to the expectation value of Q(p) for the

corresponding quantum problem to order h. Approximations using classical trajectories

with quantum initial conditions have been applied to molecular scattering1 1 and to the

10
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calculation of relaxation rates for particles interacting with heat baths.12 ,13 Equation (38)

justifies this approach for atom-surface scattering in the semiclassical limit.

We finally note that if 2kBT > hwi for all wi, then AQ o T for any Q.

IV. One-dimensional Example with

Comparison to Trajectory Approximation

As an application of the results of the previous section, we consider a one-dimensional

example where the surface consists of a single harmonic oscillator. The Hamiltonian is

2 2 1 22
Hld = E + _1L + _MW Y + V0 exp P (39)

where q = V--a and y = /v'M with a and being the oscillator's normal coordinates,

and M is the oscillator's mass. Equation (38) gives

1 a2p P 2 1 a2p I 2 (40)
AP = ' Ifc < Y >0 + - , < >0, (40)

and
2 Ifc)2 < 2 >0 +( p < 2 >0,_ __ <f> 0, (4 1)

where 62 p -< (P - pC1)2 >f +O(h 2 ) is the momentum uncertainty of the final incidon

state. Equation (38) also implies

A = Qp fA+1 2p Ifcb2p (42)

and

6 Q = fc)2P, (43)

where 62 Q =< [Q(P) - Qdc,2 >f +O(&). Equations (42) and (43) imply that the semiclas-

sical shift and uncertainty for any quantity may be found from the shift and uncertainty

for p and the final value of pCI.

11



The trajectory approximation has been developed to calculate the final energy distri-

bution of the incidon (and for a fiat surface the momentum distribution as well). Although

predictions based on the trajectory approximation have been compared to experiment with

some apparent success, 5- 8 a compelling theoretical justification for it has not been given.

To test its validity, we compare the semiclassical momentum shift and uncertainty pre-

dicted by the trajectory approximation to the exact results calculated from equations (40)

and (41).

The essence of the trajectory approximation is that the incidon is assumed to follow the

classical trajectory, while the surface atoms are treated quantum mechanically with a time-

dependent interaction potential, V [xC (t), i]. The final energy distribution, Ps(E), for the

surface is then calculated, and the final energy distribution for the incidon is inferred from

the relationship

Pind(E) = f dE'P,(Et)Ps(Eo + E' - E), (44)

which follows from energy conservation, where P,(E') is the initial energy distribution for

the surface and E0 is the initial incidon energy.

Using arguments similar to those of section III, we can obtain expressions for the semi-

classical limit of the final energy shift and energy width in the trajectory approximation.

For simplicity, we confine ourselves to the particular system described by Hid. We define

a set of trajectories by

Mita (tyY' = - 2 ta (ty'i, )- exp Yta(tIY, XCI(t (45)

with the initial conditions

(46)

and an energy by

E '([', M-- ta(t, ')1 2 + ,2[ta(t' Y1,')1 )" (47)

12



The semiclassical energy shift and uncertainty for the surface in the trajectory approxima-

tion are then

A a - Et c Y >0 +_ S~ If < >0, (48)S 2 ay12 2f < 0+ 1~2

and
b2"c f)<Y 0+- '- Ifc) < 2>0 (9

From energy conservation, the energy shift, AEd, and energy uncertainty, 62 Ea for
audf

the incidon are inferred to be
A Ja ESA;ta

b2 Etad _b..2 Ea (50)
ind

where ES is the initial mean energy of the surface. Using equations (42) and (43), the

momentum shift and uncertainty for the incidon may be written as

p AEd Et-Ea

22p3 _ ndt

6P fc M bEa f (51)

--'-f C ind '

where Pfc is the final value of the incidon's classical momentum.

Without loss of generality, we may choose units so that M = W = 1 and so po/M - -1.

We may also set V0 = 1, since a change in V0 is equivalent to a shift in the coordinate

x. Assuming the surface oscillator is initially at zero temperature, the system then has,

excluding h, two independent parameters which we take as " = 1iR and tj = m/R.

In Figures 1-3, the exact momentum shift and that predicted by the trajectory ap-

proximation are plotted as a function of j7 for equal to 1, 2, and 5, and similarly Figures

4-6 show the momentum uncertainty versus 17. The ratio of the momentum uncertainty in

trajectory approximation to the exact value is plotted in Figure 7.

We see from the figures that in general the predictions of trajectory approximation

deviate significantly from the exact result for both the shift and the uncertainty. How-

ever, when either 17 or is small the trajectory approximation accurately predicts the

13
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momentum uncertainty (but not the shift). In Appendix B, we prove that the trajectory

approximation becomes exact fo. .he uncertainty either if qi ,< 1 or if <z 1 and that

il < 1 corresponds to the maximum deflection of the oscillator being small compared to

the interaction range, R, while " ,< 1 corresponds to the interaction between the incidon

and the oscillator being adiabatic. We also note, without giving a proof, that both the ex-

act and trajectory approximation values for the shift and uncertainty have zeros whenever

the classical collision is perfectly elastic.

V. Conclusions

Our main result of equation (38) provides a simple method for obtaining the semiclas-

sical limit of functions of the incidon's final momentum. It requires only the equilibrium

correlations of the surface atoms and quantities derivable from classical trajectories to be

calculated. We expect this method to be useful for physically interesting surfaces.
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Appendix A

In this appendix we justify equation (26). Defining the (d + N)-dimensional vectors

4 =(x, )

BA =(r, ) (Al)

C =(s,

14



equation (16) can be rewritten

(8+ sia a a i av a 1 g(yCt
at-m j- + q'2iit =

Nd+N "

where the sum is over all positive, odd G, with G = E.+= I where I is a nonnegative

integer; the coefficients J are given by

J'(A,l II) = 11 -~-- (74 Jh~ V(Ap)(cj, (A3)
/J=1 (a A. r=o = v. f aA,

where 1r- =Id+' b, with bv being a nonnegative integer.

Using the expansion from equation (20), we obtain

ago(B,,cp,t) =  8 IcB-a o(Bu,Cj,t), (A4)(-t - + ri + i 2 i -- i ai-i  5 A, 5A. q

and

(. a+ i a a_ W2ia-gi (B,2C,,)t) =mcB a gil(BI,CAt)+t M -ri + -j,i IB ' t =.- aAa A. CIj(5

i a3 V(4) B (a~ 1 a3 V(Ay) a3 go(Bl,C ,t) (A5)+ 3 (A- JcjBvBx- -go (BM, Cu, t) - - OAOAA
+ 2A OAt, a,24 aA,8A A, accp c

The equation for g0 is identical to that for go, and since g and j have the same initial

conditions, we have j = go. The equation for jj is

a + s i a a iw2 i a w I(B/, C", t) = ,I8Ac1B a (By,Cl ,t)+Y -i-i g i- -aAri  A. R-1 (A6)1 a3V(A) J9Bt ( A6)jo(Bu,CIt).

2aA,,aA,8A ac
Subtracting equation (A6) from (A5), we find

+ - + 8 i 2 2 V(A-) wiBEi)__.gj(B,_,C, t) A cjBv AgAgd(BPC11 t)m ar i  a - AuOA, q

31 V(A,,) a3go(B,,,Cp, t)
24 aA~aA~aAK, I ac~acC~

(A7)

15
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where Ag1 = gl - il Defining

Arj(t) =1f DB,DCpAg1(BM., C,, t)r3  A8

Asj(t) = fDBDCuAgl(B 2 C11t)sj,

equation (A7) may be used to show

As8 2 V=A~ (A)Icrkt,()

Ai,(t) = ~~ -l ,eA r t,(

assuming that g(BM, Cp) and its derivatives go to zero as any of its arguments goes to

infinity. Since initially Arj(to) = Asj(to) = 0, the unique solution to (AQ) is Arj(t)

Asj(t) = 0 which suffices to demonstrate equation (26).

Appendix B

Here we show that the trajectory approximation predicts the correct momentum un-

certainty for either Y7 < 1 or 'z1. We use units with M = w = -po/rn 1 and set

vo =1.

Defining a set of classical trajectories by

a71~,%, e["tYV-"("') (Bi)

with the initial condtions

(B2)

and an energy by

ES (ty, ([Ytr (t,% ',/)I12 + [ Ir (t, Y,I)12) (B3)

16



Ei~~Um15AKMREB.MA~~~~n~~iLNJ .Md VX~ MW'q V"JA 1 V K )~.~ cv- .'v' Q L7 3M-)L*%Jn jug

we have for the exact semiclassical energy uncertainty of the oscillator

2'E = E.f)I<Y 0+1~f) 2 >0(B4)

Using < y2 >0=< 2 >0= h12, equation (B4) may be rewritten

+ Ic) 2 [ I +tr ac~ -1Y l'

b2 J2(ty 2 Ea 22

ayrr vrcoytt + -t-

Takin equain (4) to bexprniesimans wer ten ae drvdwihi dnia o(5

sine ist) cosdrtecs ihj 1. Thrfoe ifay re1,rthe the deletinofd eqsilato is much les

tha nteraneuaRio

wih sn thfirs1, equationo B() manb appb roiatenb

tr~~t) = ycstt o)+r'i(t,-Vto) - 1exrtVV
Y f t'sn~t t'!tr~').(17



Note that the equation for xtr is independent of ytr. Thus

Xtr= Xtr(t,0,O) -CI(t), (Bl1)

and
gtr( t , Y', _l)=-Ytr ( t , Y%, ' - e ( )  (B12)

Equation (B12) together with equation (45) imply that the trajectories use," to calculate

the exact uncertainty are the same as those used for the trajectory approximation. Using

(B7), we then obtain the approximate solution

r(t) = y ta(t) = y' cos(t - to) + V' sin(t - to) - c dt' sin(t - tI)e<- CI (t') (B13)

Therefore, from equation (B5), we have, for q < 1,

2E = 6 t = h f+=ti
62E "2E,$ = rj deitz(t)~ 12 = Etrans, (B14)2 _0-0

where Etrans is the classical energy transferred to the oscillator. Equation (B14) together

with (B6) show that the ratio of the trajectory approximation momentum uncertainty

to the exact momentum uncertainty will be nearly unity if r7 < 1. It is straightforward

to verify that the solution given in (B13) leads an energy shift of zero, and thus this

approximation tells nothing about the ratio of the trajectory approximation shift to the

exact shift.

We now treat the case with 1 , z I. Defining A(t) = exp[-xtr(t)], the second equation

of (BI) can be rewritten

g r(t) = -yt*(t) - A(t)e. '-(O).  (B15)

The oscillator's motion will be adiabatic if A(t) changes very little over one period of

oscillation. Thus the adiabatic condition is

-t) = (t)I : 1. (B16)

18 18



Since Iitr(t)I : 1, again considering y' and V' to be infinitesimals, condition (B16) is

satisfied if < 1.

From the general theory of adiabatic motion, 14 we obtain the invariant

I(Ead, A) ead E) Ead 1 a ' .a(B17)-J 27r 1 2 Ac]

where1tr

Ead [Ytr? + I L J +A(Yi (B18)
2 2

is the adiabatic energy of the oscillator and E) is a step function. In particular, I(Ead, 0)=

Ead. Since both before and after the collision A is very small, the invariance of I implies

that the initial and final energies of the oscillator are equal.

In general, expanding ES to second order in y' and V' yields

ES A( C1)2 + 1)2

2 yi2 1 2 t
___

+8y' 2I I1 Id + (Yi 2v + a29 ]2(B

ay/

+ ra tayr + 1 2yt a -r 2~i a2 t

Y, Ic! + (I IcI c + d aI,] Y,

th fina energy2 (ig
11 1.2 1 1t a-r 2 a2It

('7 c + 2 ~Ic) + ( Ic) + (WTIfc) = 1(B1

2 aYi a ~ltrv

ESf Y 2 + 1 V2.HcO (B20)
19 2
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A similar argument shows (B21) and (B22) to be valid if yt' is replaced by yta. From

equation (B5), we thus obtain in the adiabatic limit

6 2ES = 62aoa = hh orc+ cran= (or (B23)

demonstrating that the trajectory approximation gives the correct uncertainty for < ~ 1.

20
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FIGURE CAPTIONS

1) Ap/t vs. q7 with " = 1 for the one-dimensional example. The solid line is the exact

value, and the dotted line is the trajectory approximation.

2) Ap/P vs. 77 with " =2. The solid line is the exact value, and the dotted line is the

trajectory approximation.

3) Ap/Pi vs. q with " = 5. The solid line is the exact value, and the dotted line is the

trajectory approximation.

4) b2p/h vs. Y7 with C = 1. The solid line is the exact value, and the dotted line is the

trajectory approximation.

5) b2p/P vs. ? with C = 2. The solid line is the exact value, and the dotted line is the

trajectory approximation.

6) 2 p/P vs. j7 with C = 5. The solid line is the exact value, and the dotted line is the

trajectory approximation.

7) The ratio of the momentum uncertainty in the trajectory approximation to the exact

momentum uncertainty vs. q/. The solid line is with " = 5, the dashed line is with C = 2,

and the dotted line is with " =1.
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